[Manimegalai, 2(12): December, 2013]

| JESRT

ISSN: 2277-9655
Impact Factor: 1.852

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Efficient Load Balancing With Distributed Hash Tablesin Cloud
M.Manimegalai’!, Ms. A.Kannammal?
"'PG Scholar’Associate professor, Department of Computer SciandeEngineering, Jayam College of
Engineering and Technology, Dharmapuri, Tamilnaddid
manimegalaicse @gmail.com

Abstract

Distributed file systems are key building blocks éud computing applications based on the MapuRed
programming paradigm. In such file systems, nodeataonce serve computing and storage functionBteais
partitioned into a number of chunks allocated istidct nodes so that Map Reduce tasks can be pwtbin
parallel on the nodes. However, in a cloud comguénvironment, failure is the norm, and nodes n&jnproved,
replaced, and added in the system. This dependencdearly incompetent in a large-scale, failuren®
environment on account of the central load balarceut under considerable workload that is lingadaled with
the system size, and may thus become the attainbwtieneck and the single point of failure. Heaefully
distributed load rebalancing algorithm is presertedope with the load imbalance problem.

Our algorithm is compared against a centralizedr@gagh in a production system and a competing
distributed solution presented in the literaturbe Bimulation outputs indicate that proposal is parable with the
existing centralized approach and considerably exfipms the prior distributed algorithm in terms lofad

imbalance factor, migration cost, and algorithmieread.

Keywords: DHT, Centralise System, LoadimBalancing, DisttdzliSystem

Introduction

The Distributed file systems an important issue
in DHTs is load-balance the even distribution efiis to
nodes in the DHT. All DHTs make a few efforts tadb
balance; generally by randomizing the DHT address
associated with each item with a “good enough” hash
function and making each DHT node responsible for a
balanced portion of the DHT address space. Chodal is
prototypical example of these approaches: its “oamd
hashing of nodes to a ring means that each node is
responsible for only a small interval of the rinddeess
space, while the arbitrary mapping of items medmad t
only a limited number of items land in the (smaifg
interval owned by any node. The cloud computing
updated distributed hash tables do not evenly tpmarti
the address space into which keys get mapped; some
machines get a larger portion of it. Thus, evekeifs are
abundant and random, some machines receive mare tha
their fair share, by almost a factor of n times dkerage.
To manage with this problem, many DHTs use virtual
nodes each real machine pretends to be severaictlist
machines, each participating individually in the DH
protocol. The machine’s load is thus driven by sungm
over several virtual nodes, creating a tight gatigeof
load near the average. As an example, the ChordsD$IT
based upon consistent hashing which requires Virtua
copies to be operated for every node.

The node will occasionally check its inactive
virtual nodes, and may movement to one of thenhmef t
distribution of load in the system has changed.c&in
only one virtual node is alive, the real node neetipay
the original Chord protocol’'s multiplicative incisa in
space and band width costs. The solutions is theyef
allows nodes to move to arbitrary addresses; Widse
freedom shows that load balance an arbitrary Bigtirig
the items, without exhaust much cost in maintairimeg
load balance. Here, the scheme works through a ddind
“work stealing” in which under loaded nodes migraie
portions of the address space occupied by too amind
items. The protocol is simple and experimentathvail
the complexity in its performance analysis. Here,
primarily interested in studying the load rebalagci
problem in distributed file systems specialized lfoge-
scale, dynamic and data-intensive clouds. Finally,
permitting nodes to choose arbitrary addressesuin o
item balancing protocol makes it easier for malisio
nodes to disrupt the operation of the P2P netwdrk.
would be interesting to identify counter-measumsliis
problem.

http: // www.ijesrt.confC)l nternational Journal of Engineering Sciences & Research Technology
[3647-3652]

[Manimegalai, 2(12): December, 2013]

Related Work

The attempt to load-balance can fail in two
ways. First, the typical “random” partition of theldress
space among nodes is not entirely balanced. Sokhesno
end up with a larger portion of the addresses &g t
receive a larger portion of the randomly distrilalite
items. Second, some applications may inhibit the
randomization of data items addresses. For exarple,
support range seeking in a database applicatioiethes
may need to be placed in a specific order, or atifip
addresses, on the ring. In such cases, find thasite
unevenly distributed in address space, means that
balancing the address space among nodes is naladeq
to balance the distribution of items among nodesreH
the given protocols to solve both of the load bailag
challenges just described.

Performance in a P2P System:

Our online load balancing algorithms are
motivated by a new application domain for range
partitioning peer-to-peer systems.P2P system stares
relation over a large and dynamic set of nodes, and
support queries over these relations. Many current
systems, known as Distributed Hash Tables (DHTs) us
hash partitioningto ensure storage balance, and support
point queries over the relations. There has been
considerable recent interest in developing P2Pepyst
that can support efficient ranges of query. Fomapla, a
P2P multi-player game might query for all objects
located in an area in a virtual 2-D space. In a R2B
cache, a node may request (pre-fetch) all pagds avit
specific URL prefix. It is familiar that hash pditining
is inefficient for answering sucd hocrange of queries,
motivating a search for new networks that allowgen
partitioning while still maintaining the storage ldnace
offered by normal DHTSs.

Handling Dynamism in the Network:

The network is a splits the range &f td take
over half the load of Nh, applying the NBRADJUST
operation. Behind this split, there may be
NBRBALANCE violations between two pairs of
neighbours and in responses, ADJUSTLOAD is
executed, first at node Nh and then at node Ns #asy
to show (as in Lemma 3) that the resulting sequerice
NBRADJUST operations repair all NBRBALANCE
violations.

Node Departure;

While in the network, each node governs data
for a particular range. When the node leaves, Hia
stored becomes unavailable to the rest of the pe&R
networks resolve this data loss in two ways: (a) Do
nothing and let the “owners” of the data deal wiith
availability.

ISSN: 2277-9655
Impact Factor: 1.852

The owners will frequently poll the data to
detect its loss and re-insert the data into thevordt
Maintain replicas of each range across various si08e
Skip Net DHT organizes peers and data objects
according to their lexicographic addresses in trenfof
a variant of a probabilistic skip lists. It suppsort
logarithmic time range-based lookups and guarantees
path locality. Mercury is more general than Skipt Ne
because it supports range-based lookups on multiple
attributes. Our use of random sampling to evalgatry
selectivity constitutes a novel contribution towsard
implementing scalable multi-dimensional range cgeri
Load balancing is another essential way in which
Mercury from Skip Net. While Skip Net integrates a
constrained load-balancing mechanism, it is only
appropriate when part of a data name is hashealhich
case the part is unavailable for performing a ramggry.
This shows that Skip Net supports load-balancing or
range queries not both.

System Model
(a)Data Popularity:

Unfortunately, in many applicationsa
particular range of values may show a much greater
popularity in terms of database insertions or gsethan
other ranges. This would cause the node accountable
the popular range to become overloaded. One obvious
solution is to conclude some way to partitioninge th
ranges in proportion to their popularity. As a Iqeadtern
varies, the system should also move nodes around as
needed.

We leverage our approximate histograms to
help implement load-balancing in Mercury. Firstclea
node can use histograms to decide the average load
existing in the system, and, hence, can resohi¢ ig
relatively heavily or lightly loaded. Second, the
histograms consist of information, about which part
the overlay are lightly loaded.

W CAWindows\systemaZicmd.exe.

al Pac

BB =

nnnnnnn

{ Fig.1 about which parts of the overlay arelightly loaded 7

(b)Load Balancing:

We have shown how to balance thdres$
space. Some applications, such as those designing t
support range-searching operations, need to ddsigma
appropriate, non-random mapping of items into the
address space. In this section, we check a dynamic

http: // www.ijesrt.con(C)l nternational Journal of Engineering Sciences & Research Technology
[3647-3652]

[Manimegalai, 2(12): December, 2013]

protocol that aims to balance load farbitrary item
distributions. To do so, we must forfeit the preiso
protocol’s restriction of each node to a small nembf
virtual node locations—instead, each node is foeérift
anywhere. Our protocol is randomized, and relieshen
underlying P2P routing framework only insofar akas
to be able to contact “random” nodes in the sysfem
the full paper we show that this can be done eveenw
the node distribution is skewed by the load balagci
protocol). The protocol is the ensuing, to state th
performance of the protocol, we need the concep of
half-life [LNBKO02], which is the time it takes for half the
nodes or half the items in the system to arrivdepart.

(c)DHT Implementation

The storage nodes are structured astaork
based on distributed hash tables(DHTY, e.g.,
discovering a file chunk can simply refer to rapiey
lookup in DHTs, given that a unique handle (or
identifier) is assigned to each file chunk. DHTs allow
nodes to self-organize and Repair while constantly
offering lookup functionality in node dynamism,
clarifying the system provision and management. The
chunk servers in our proposal are arranged as a DHT
network. Typical DHTs assurance that if a node ésav
then its locally hosted chunks are accurately niégdo
its successor; if a node joins, then it allocatesahunks
whose IDs promptly precede the joining node from it
successor to manage. Now we explain the application
this idea to DHTs. Let hO be a universally admistha
function that maps the peers onto the ring.
Correspondingly, let hl; h2; : : :hd be a series of
universally agreed hash functions mapping the items
onto the ring. To embed an item x using d hash
functions, a peer calculates h1(x); h2(x);: : :d(.
Then, d lookups are executed in parallel to andoders

to the mapping given by h0 values

(d) Chunk creation:

A file is partitioned into a number of chunks
allocated in distinct nodes so that Map Reduce Jaak
be performed in parallel over the nodes. The lofd o
node is normally proportional to the number of file
chunks the node obtains. Because the files in @dotan
be promptly created, deleted, and appended, andsnod
can be upgraded, recovered and added in the flesy
the file chunks are not distributed as similarlypassible
among the nodes. Our objective is to assign thelchu
of files as uniformly as possible among the nodeshs
that no node manages an excessive number of chunks.

ISSN: 2277-9655
Impact Factor: 1.852

(e)Replica Management:

In distributed file systems (e.g., @®oGFS and
Hadoop HDFS), a constant number of replicas foryeve
file chunk are maintained in distinct nodes to ioyw
file availability with respect to node failures atakeoff.
Our current load balancing algorithm does not treat
replicas clearly. It is unlikely that two or moreplicas
are placed in an identical node because of theorand
nature of our load rebalancing algorithm. More
particularly, each under loaded node samples a aumb
of nodes, each preferred with a probability of lim,
share their loads (where n is the total numberaiage
nodes).

L oad Balancing Algorithm

In our proposed algorithm, each chwwekver
node | first estimated whether it is under loadagh{) or
overloaded (heavy) without global awareness. A nede
light if the number of chunks it hosts is smaller thaa th
threshold. Load statuses of a sample of randomly
preferred nodes. Fig.2 shows that the concept @fdLo
balancing

Load Balancing
Least Connections - Weighted

Active HTTP Next Request

SEIVEr Tunsactions Weight Serviced
ool ity N{w} = (Number of active
e eekkd
setver1 3 2 transactions) * {10000 / weight)
15 3
server-3 0 4 g _alin ——
R,% ‘
S !;-
- — T serverd3
— __.v =
i i '
Requests Load Balancer .
(\) server-{nt

Fig.2 Load Balancing

Specifically, each node contacts a number of
randomly selected nodes in the system and builds a
vector denoted by V. A vector abide of entries, aadh
entry includes the ID, network address and loatlistaf
a randomly preferred node. Fig. 3 shows the taiallver
of messages generated by a load rebalancing dgorit
A large-scale distributed file system is in a

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3647-3652]

[Manimegalai, 2(12): December, 2013]

o > 2w N5 "Es "= S "D

Fig.3Load Balanced State

Load-balanced state:

if each chunk server hosts no more than Am
chunks. In our proposed Load-balanced algorithroshea
chunk server node | first estimates whether it nslar
loaded (light) or overloaded (heavy) without global
knowledge. Lj A from j to free j's load. Node j mayill
remain as the heaviest node in the system afthast
migrated its load to node i. In this case, the gmeteast-
loaded node, say node i abandon and then rejoms th
system as j's successor. That is, | become nodegrd
j’'s original successor i thus becomes node j + ¢hsa
process repeats iteratively until j is no longee th
heaviest. Then, the same process is performeddase
the extra load on the next heaviest node in théesys
This process repeated until all the heavy nodethén
system become light nodes.

Others: We will offer a rigorous performance analysis
for the effect of varying nV in Appendix E. Partiatly;

we discuss the tradeoff between the value of nVtaad
movement cost. A larger nV proposes more overhead f
message transfers, but results in a smaller movemen
cost.

Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple
Insertg

:Let L(Ni) = x 2 (Tm; Tm+1].
: Let Nj be the lighter loaded of NI and Ni+1.
:if L(Nj) _ Tm(11 then fDo NBRADJUSTg
: Move tuples from Ni to Nj for equalize load.
: ADJUSTLOAD(N))
6: ADJUSTLOAD(NI)
7:else
8: Find the least-loaded node Nk.
9:if L(NK) _ Tm12 then fDo REORDERg
10: Transfer all data from Nk to N = Nk_1.
11: Transfer data from Ni to Nk, where s.t. L(Ni) =
dx=2e and
L(NK) = bx=2c.
12: ADJUSTLOAD (N)
13: fRename nodes appropriately after REORDER.g
14:end if
15:end if

OabhWNE

ISSN: 2277-9655
Impact Factor: 1.852

Examplel In the setting above, the maximal load is at
most log log n=log d+O with high probability. Opiroof
(not included for reasons of space) uses the ldyere
induction technique from the seminal work of Be@aab
the variance in the arc length associated with ee;
we must modify the proof to take this into accodrtie
standard layered induction using the fact thatef¢ is k
bins that have load at least k,

Example2 long distance links are constructed using the
harmonic distribution on node-link distance. Valuak
means the overlay when the harmonic distribution on
value distance. Given the capacities of nodes (eenoy
{B1, B2, - - - Bn}), we enhance the basic algorithm in
Section IlI-B2 as follows: each node i approximattes
ideal number of file chunks that it needs to hasaiload
balanced state as follows:

Ai i,
Notes that the performance of the Value Link overta
representative of the performance of a plain Diiier
the absence of hashing and in the presence of load
balancing algorithms which presemnvalue contiguity.

map(String key, String value):

/I key: document name

/I value: document contents

for each word w in value:
Emitintermediate(w, "1");
reduce(String key, Iterator values):

/I key: a word

/I values: a list of counts
int result = 0;

for each v in values:
result += Parselnt(v);
Emit(AsString(result));

Distributed File System

We have given several provably efficient load
balancing for distributed file’s protocols for dibuted
data storage in P2P systems. Further details aalgsas
can be found in a thesis. Our algorithms are sijrgohel
effortless to implement in. distributed files sceanlly
next research step should be a practical evaluaifon
these schemes. In addition, several detailed open
problems follow from our work. First, it might be
possible to further enhance the consistent hashing
scheme as discussed at the end of our range seatah
structure. Distributed does not conveniently gelimgado
more than one order. For example (Fig.4) when ragori
the music files, one might want to index them byhbo
artist and song title, granting lookups accordiagiwo
orderings. Since our protocol readjusting the itersisag
the ordering, performing this for two orderings the

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3647-3652]

[Manimegalai, 2(12): December, 2013]

same time seems difficult. A simple, but insigrafit,
solution is to rearrange not the items themselves,
however just store pointers to them on the nodéss T
needs far less storage, and

F Frp—
& B [

'E" | e aerns i | g Faecoom

: | : | I e

& nm u

4 £

B 5 X

§ o

: g om

& 0Ea i

3’- E =

= k3

= W

£ 5

g i L

& um :

2 ja s = Jd gk : e :
< Vomogeeros Hes_h Hemm R somogrnens e]

Fig.4 The average downloading rate and Convergence time
in Network Setting

Makes it possible to maintain two or more
orderings at once. Lastly, permitting nodes to ceoo
arbitrary addresses in our item balancing protdool
distributed file’s makes it easier for maliciousdes to
disrupt the operation of the P2P network. It woblkl
engaging to find counter-measures for this problem.

Performance Evaluation

We run a varying number of players. The
players manoeuvre through the world according to a
random waypoint model, with a motion time selected
uniformly at random from seconds, a destinatioected
uniformly at random, and a speed selected uniforatly
random from (0, 360) pixels per second. The sizthef
game world is scaled according to the number ofesta
The range of dimensions are 640n _ 480n, wheregheis
number of players. All outcomes are based on the
average of 3 Experiments, with each experiment
persisting for 60 seconds. The experiments incline
bent of log n sized LRU cache long pointers. TheH3D
load balancer and our proposed idea. Our proposal
clearly concludes the HDFS load balancer. When the
name node is heavily loaded (i.e., small M’'s), our
proposal remarkably performs better than the

ISSN: 2277-9655
Impact Factor: 1.852

DMExpress HOFS Load vs Hadoop
put

e B i) P

s [F .' e Flir

Vink
w U Hy N

Filahipe o56|
Fig.5 HDFS

HDFS load balancer. For example, if M = 1%,
the HDFS load balancer takes approximately 60 ragut
to balance the loads of data nodes. By comparison,
proposal takes nearly 20 minutes in the case ofl¥=
Specifically, unlike the HDFS load balancer, our
proposed idea is independent of the load of theenam
node. Especially, approximating the unlimited scenis
costly, and the use of blog2 nc virtual peers appsed
in introduces a large amount of topology mainteeanc
track but does not provide a very close approxiomati
Finally, we notice that while we are illustratingetmost
powerful instantiation of virtual peers, we areretating
it to the weakest choice model further improvememes
available to us just by increasing d to 4.

Conclusions

A novel load balancing algorithm to deal with
the load rebalancing problem in large-scale, dyoami
active and distributed file systems in clouds hasrb
presented in this paper. Our proposal aims to baléme
loads of nodes and reduce the demanded movement cos
as much as possible, while taking benefits of plalsi
network locality and node heterogeneity. In theeals
of typical real workloads (i.e., the distribution$ file
chunks in a large-scale storage system) in theigubl
domain, we have tested the performance of our mapo
and compared it against competing algorithms thnoug
synthesized probabilistic distributions of file ctks. The
combination workloads stress test the load balancin
algorithms by creating a few storage nodes that are
heavily loaded. The computer simulation outcomes ar
encouraging, indicating that our proposed algorithm
works very well.

Reference
[1] Stoica, R. Morris, D. Liben-Nowell, D. R.
Karger, M. F. Kaashoek, F. Dabek, and H.
Balakrishnan, “Chord: a Scalable Peer-to-Peer

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology
[3647-3652]

[Manimegalai, 2(12): December, 2013]

Lookup Protocol for Internet Applications,”
IEEE/ACM Trans. Netwvol. 11, no. 1, pp. 17—
21, Feb. 2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems|!NCS
2218 pp. 161-172, Nov. 2001.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-
value Store,” in Proc. 21st ACM Symp.
Operating Systems Principles (SOSP;00Kct.
2007, pp. 205-220.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R.
Karp, and |. Stoica, “Load Balancing in
Structured P2P Systems,” iRroc. 2nd Int'l
Workshop Peer toPeer Systems (IPTPS'Q2)
Feb. 2003, pp. 68-79.

[5] D. Karger and M. Ruhl, “Simple Efficient Load
Balancing Algorithms for Peer-to-Peer
Systems,” inProc. 16th ACM Symp. Parallel
Algorithms and Architectures (SPAA'Q4)une
2004, pp. 36-43.

[6] D. DeWwitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna.

Gamma -a high performance dataflow database.

In Proc. VLDB 1986.

[7] D. Dewitt and J. Gray. Parallel database
systems: The future of high performance
database processingcommunications of the
ACM, 36(6), 1992.

[8] H. Feelifl, M. Kitsuregawa, and B. C. Ooi. A
fast convergence technique for online heat-
balancing of btree indexed database over
shared-nothing parallel systems. IRroc.
DEXA, 2000.

[9] P. Ganesan, M. Bawa, and H. Garcia-Molina.
Online balancing of range-partitioned data with
applications to p2p systems. Technical Report
http://dbpubs.stanford.edu/pubs/2004-18,
Stanford U., 2004.

[10]P. Ganesan, B. Yang, and H. Garcia-Molina.
One torus to rule them all: Multi-dimensional
queries in p2p systems. \WebDB 2004.

[11]S. Ghandeharizadeh and D. J. DeWitt. A
performance analysis of alternative multi-
attribute declustering strategies. IfProc.
SIGMOD, 1992.

[12]N. J. A. Harvey, M. Jones, S. Saroiu, M.
Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality
properties. IProc. USITS2003.

ISSN: 2277-9655
Impact Factor: 1.852

[13]1D. R. Karger and M. Ruhl. Simple efficient
load-balancing algorithms for peer-to-peer
systems. IrProc. IPTPS 2004.

http: // www.ijesrt.conC)I nternational Journal of Engineering Sciences & Research Technology

[3647-3652]

