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Abstract 

Distributed file systems are key building blocks for cloud computing applications based on the Map Reduce 
programming paradigm. In such file systems, nodes all at once serve computing and storage functions; a file is 
partitioned into a number of chunks allocated in distinct nodes so that Map Reduce tasks can be performed in 
parallel on the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be improved, 
replaced, and added in the system. This dependence is clearly incompetent in a large-scale, failure-prone 
environment on account of the central load balancer is put under considerable workload that is linearly scaled with 
the system size, and may thus become the attainment bottleneck and the single point of failure. Here, a fully 
distributed load rebalancing algorithm is presented to cope with the load imbalance problem.  

Our algorithm is compared against a centralized approach in a production system and a competing 
distributed solution presented in the literature. The simulation outputs indicate that proposal is comparable with the 
existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load 
imbalance factor, migration cost, and algorithmic overhead.  
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Introduction 
The Distributed file systems an important issue 

in DHTs is load-balance the even distribution of items to 
nodes in the DHT. All DHTs make a few efforts to load 
balance; generally by randomizing the DHT address 
associated with each item with a “good enough” hash 
function and making each DHT node responsible for a 
balanced portion of the DHT address space. Chord is a 
prototypical example of these approaches: its “random” 
hashing of nodes to a ring means that each node is 
responsible for only a small interval of the ring address 
space, while the arbitrary mapping of items means that 
only a limited number of items land in the (small) ring 
interval owned by any node.  The cloud computing 
updated distributed hash tables do not evenly partition 
the address space into which keys get mapped; some 
machines get a larger portion of it. Thus, even if keys are 
abundant and random, some machines receive more than 
their fair share, by almost a factor of n times the average. 
To manage with this problem, many DHTs use virtual 
nodes each real machine pretends to be several distinct 
machines, each participating individually in the DHT 
protocol. The machine’s load is thus driven by summing 
over several virtual nodes, creating a tight gathering of 
load near the average. As an example, the Chord DHTs is 
based upon consistent hashing which requires virtual 
copies to be operated for every node.  

The node will occasionally check its inactive 
virtual nodes, and may movement to one of them if the 
distribution of load in the system has changed. Since 
only one virtual node is alive, the real node need not pay 
the original Chord protocol’s multiplicative increase in 
space and band width costs. The solutions is therefore 
allows nodes to move to arbitrary addresses; with these 
freedom shows that load balance an arbitrary distributing 
the items, without exhaust much cost in maintaining the 
load balance. Here, the scheme works through a kind of 
“work stealing” in which under loaded nodes migrate to 
portions of the address space occupied by too abundant 
items.  The protocol is simple and experimental, with all 
the complexity in its performance analysis. Here, 
primarily interested in studying the load rebalancing 
problem in distributed file systems specialized for large-
scale, dynamic and data-intensive clouds. Finally, 
permitting nodes to choose arbitrary addresses in our 
item balancing protocol makes it easier for malicious 
nodes to disrupt the operation of the P2P network. It 
would be interesting to identify counter-measures for this 
problem.  
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Related Work 
The attempt to load-balance can fail in two 

ways. First, the typical “random” partition of the address 
space among nodes is not entirely balanced. Some nodes 
end up with a larger portion of the addresses and thus 
receive a larger portion of the randomly distributed 
items. Second, some applications may inhibit the 
randomization of data items addresses. For example, to 
support range seeking in a database application the items 
may need to be placed in a specific order, or at specific 
addresses, on the ring. In such cases, find the items 
unevenly distributed in address space, means that 
balancing the address space among nodes is not adequate 
to balance the distribution of items among nodes. Here 
the given protocols to solve both of the load balancing 
challenges just described. 
Performance in a P2P System:  

Our online load balancing algorithms are 
motivated by a new application domain for range 
partitioning peer-to-peer systems.P2P system stores a 
relation over a large and dynamic set of nodes, and 
support queries over these relations. Many current 
systems, known as Distributed Hash Tables (DHTs) use 
hash partitioning to ensure storage balance, and support 
point queries over the relations. There has been 
considerable recent interest in developing P2P systems 
that can support efficient ranges of query. For example, a 
P2P multi-player game might query for all objects 
located in an area in a virtual 2-D space. In a P2P web 
cache, a node may request (pre-fetch) all pages with a 
specific URL prefix. It is familiar that hash partitioning 
is inefficient for answering such ad hoc range of queries, 
motivating a search for new networks that allow range 
partitioning while still maintaining the storage balance 
offered by normal DHTs. 
 
Handling Dynamism in the Network: 
             The network is a splits the range of Nh to take 
over half the load of Nh, applying the NBRADJUST 
operation. Behind this split, there may be 
NBRBALANCE violations between two pairs of 
neighbours and in responses, ADJUSTLOAD is 
executed, first at node Nh and then at node N. It is easy 
to show (as in Lemma 3) that the resulting sequence of 
NBRADJUST operations repair all NBRBALANCE 
violations. 
 
Node Departure:  

While in the network, each node governs data 
for a particular range. When the node leaves, the data is 
stored becomes unavailable to the rest of the peers. P2P 
networks resolve this data loss in two ways: (a) Do 
nothing and let the “owners” of the data deal with its 
availability. 

 
The owners will frequently poll the data to 

detect its loss and re-insert the data into the network. 
Maintain replicas of each range across various nodes. A  
Skip Net DHT organizes peers and data objects 
according to their lexicographic addresses in the form of 
a variant of a probabilistic skip lists. It supports 
logarithmic time range-based lookups and guarantees 
path locality. Mercury is more general than Skip Net 
because it supports range-based lookups on multiple-
attributes. Our use of random sampling to evaluate query 
selectivity constitutes a novel contribution towards 
implementing scalable multi-dimensional range queries. 
Load balancing is another essential way in which 
Mercury from Skip Net. While Skip Net integrates a 
constrained load-balancing mechanism, it is only 
appropriate when part of a data name is hashed, in which 
case the part is unavailable for performing a range query. 
This shows that Skip Net supports load-balancing or 
range queries not both. 
 
System Model 
(a)Data Popularity: 
               Unfortunately, in many applications, a 
particular range of values may show a much greater 
popularity in terms of database insertions or queries than 
other ranges. This would cause the node accountable for 
the popular range to become overloaded. One obvious 
solution is to conclude some way to partitioning the 
ranges in proportion to their popularity. As a load pattern 
varies, the system should also move nodes around as 
needed. 

We leverage our approximate histograms to 
help implement load-balancing in Mercury. First, each 
node can use histograms to decide the average load 
existing in the system, and, hence, can resolve if it is 
relatively heavily or lightly loaded. Second, the 
histograms consist of information, about which parts of 
the overlay are lightly loaded. 

 
Fig.1 about which parts of the overlay are lightly loaded 

 
(b)Load Balancing: 
                We have shown how to balance the address 
space. Some applications, such as those designing to 
support range-searching operations, need to designate an 
appropriate, non-random mapping of items into the 
address space. In this section, we check a dynamic 
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protocol that aims to balance load for arbitrary item 
distributions. To do so, we must forfeit the previous 
protocol’s restriction of each node to a small number of 
virtual node locations—instead, each node is free to drift 
anywhere. Our protocol is randomized, and relies on the 
underlying P2P routing framework only insofar as it has 
to be able to contact “random” nodes in the system (in 
the full paper we show that this can be done even when 
the node distribution is skewed by the load balancing 
protocol). The protocol is the ensuing, to state the 
performance of the protocol, we need the concept of a 
half-life [LNBK02], which is the time it takes for half the 
nodes or half the items in the system to arrive or depart. 
 
(c)DHT Implementation 
             The storage nodes are structured as a network 
based on distributed hash tables (DHTs), e.g., 
discovering a file chunk can simply refer to rapid key 
lookup in DHTs, given that a unique handle (or 
identifier) is assigned to each file chunk. DHTs allow 
nodes to self-organize and Repair while constantly 
offering lookup functionality in node dynamism, 
clarifying the system provision and management. The 
chunk servers in our proposal are arranged as a DHT 
network. Typical DHTs assurance that if a node leaves, 
then its locally hosted chunks are accurately migrated to 
its successor; if a node joins, then it allocates the chunks 
whose IDs promptly precede the joining node from its 
successor to manage. Now we explain the application of 
this idea to DHTs. Let h0 be a universally admit hash 
function that maps the peers onto the ring. 
Correspondingly, let h1; h2; : : :hd be a series of 
universally agreed hash functions mapping the items 
onto the ring. To embed an item x using d hash 
functions, a peer calculates h1(x); h2(x);: : : ; hd(x). 
Then, d lookups are executed in parallel to and the peers 
p1; p2;;;;; pd responsible for these hash values, according 
to the mapping given by h0 values 
 
(d) Chunk creation:  
              A file is partitioned into a number of chunks 
allocated in distinct nodes so that Map Reduce Tasks can 
be performed in parallel over the nodes. The load of a 
node is normally proportional to the number of file 
chunks the node obtains. Because the files in a cloud can 
be promptly created, deleted, and appended, and nodes 
can be upgraded, recovered and added in the file system, 
the file chunks are not distributed as similarly as possible 
among the nodes. Our objective is to assign the chunks 
of files as uniformly as possible among the nodes such 
that no node manages an excessive number of chunks. 
 
 
 

(e)Replica Management: 
             In distributed file systems (e.g., Google GFS and 
Hadoop HDFS), a constant number of replicas for every 
file chunk are maintained in distinct nodes to improve 
file availability with respect to node failures and takeoff. 
Our current load balancing algorithm does not treat 
replicas clearly. It is unlikely that two or more replicas 
are placed in an identical node because of the random 
nature of our load rebalancing algorithm. More 
particularly, each under loaded node samples a number 
of nodes, each preferred with a probability of 1/n, to 
share their loads (where n is the total number of storage 
nodes). 
 
Load Balancing Algorithm 
             In our proposed algorithm, each chunk server 
node I first estimated whether it is under loaded (light) or 
overloaded (heavy) without global awareness. A node is 
light if the number of chunks it hosts is smaller than the 
threshold.  Load statuses of a sample of randomly 
preferred nodes. Fig.2 shows that the concept of Load 
balancing 

 
Fig.2 Load Balancing 

 
Specifically, each node contacts a number of 

randomly selected nodes in the system and builds a 
vector denoted by V. A vector abide of entries, and each 
entry includes the ID, network address and load status of 
a randomly preferred node. Fig. 3 shows the total number 
of messages generated by a load rebalancing algorithm, 
A large-scale distributed file system is in a 
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Fig.3 Load Balanced State 

 
Load-balanced state:  

 if each chunk server hosts no more than Am 
chunks. In our proposed Load-balanced algorithm, each 
chunk server node I first estimates whether it is under 
loaded (light) or overloaded (heavy) without global 
knowledge. Lj A from j to free j’s load. Node j may still 
remain as the heaviest node in the system after it has 
migrated its load to node i. In this case, the present least-
loaded node, say node i abandon and then rejoins the 
system as j’s successor. That is, I become node j+1, and 
j’s original successor i thus becomes node j + 2 such a 
process repeats iteratively until j is no longer the 
heaviest. Then, the same process is performed to release 
the extra load on the next heaviest node in the system. 
This process repeated until all the heavy nodes in the 
system become light nodes. 
 
Others: We will offer a rigorous performance analysis 
for the effect of varying nV in Appendix E. Particularly; 
we discuss the tradeoff between the value of nV and the 
movement cost. A larger nV proposes more overhead for 
message transfers, but results in a smaller movement 
cost. 
 
Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple 
Insertg 
1: Let L(Ni) = x 2 (Tm; Tm+1]. 
2: Let Nj be the lighter loaded of Ni�1 and Ni+1. 
3: if L(Nj ) _ Tm�1 then fDo NBRADJUSTg 
4: Move tuples from Ni to Nj for equalize load. 
5: ADJUSTLOAD(Nj) 
6: ADJUSTLOAD(Ni) 
7: else 
8: Find the least-loaded node Nk. 
9: if L(Nk) _ Tm�2 then fDo REORDERg 
10: Transfer all data from Nk to N = Nk_1. 
11: Transfer data from Ni to Nk, where s.t. L(Ni) = 
dx=2e    and 
      L(Nk) = bx=2c. 
12: ADJUSTLOAD (N) 
13: fRename nodes appropriately after REORDER.g 
14: end if 
15: end if 
 

Example1:  In the setting above, the maximal load is at 
most log log n= log d+O with high probability. Our proof 
(not included for reasons of space) uses the layered 
induction technique from the seminal work of Because of 
the variance in the arc length associated with each peer; 
we must modify the proof to take this into account. The 
standard layered induction using the fact that if there is k 
bins that have load at least k, 
 
Example2: long distance links are constructed using the 
harmonic distribution on node-link distance. Value Link 
means the overlay when the harmonic distribution on 
value distance. Given the capacities of nodes (denoted by 
{β1, β2, · · · , βn}), we enhance the basic algorithm in 
Section III-B2 as follows: each node i approximates the 
ideal number of file chunks that it needs to host in a load 
balanced state as follows: 
                      Ai = γβi, 
Notes that the performance of the Value Link overlay is 
representative of the performance of a plain DHT under 
the absence of hashing and in the presence of load 
balancing algorithms which preserve value contiguity. 
  
map(String key, String value): 
// key: document name 
// value: document contents 
for each word w in value: 
EmitIntermediate(w, "1"); 
reduce(String key, Iterator values):  
 
// key: a word 
// values: a list of counts 
int result = 0; 
for each v in values: 
result += ParseInt(v); 
Emit(AsString(result)); 
 
Distributed File System 
  We have given several provably efficient load 
balancing for distributed file’s protocols for distributed 
data storage in P2P systems. Further details and analysis 
can be found in a thesis. Our algorithms are simple, and 
effortless to implement in. distributed files so clearly 
next research step should be a practical evaluation of 
these schemes. In addition, several detailed open 
problems follow from our work. First, it might be 
possible to further enhance the consistent hashing 
scheme as discussed at the end of our range search data 
structure. Distributed does not conveniently generalize to 
more than one order. For example (Fig.4) when storing 
the music files, one might want to index them by both 
artist and song title, granting lookups according to two 
orderings. Since our protocol readjusting the items using 
the ordering, performing this for two orderings at the 
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same time seems difficult. A simple, but insignificant, 
solution is to rearrange not the items themselves, 
however just store pointers to them on the nodes. This 
needs far less storage, and  
 

 
Fig.4 The average downloading rate and Convergence time 

in Network Setting 
 

Makes it possible to maintain two or more 
orderings at once. Lastly, permitting nodes to choose 
arbitrary addresses in our item balancing protocol for 
distributed file’s makes it easier for malicious nodes to 
disrupt the operation of the P2P network. It would be 
engaging to find counter-measures for this problem. 
 
Performance Evaluation 

We run a varying number of players. The 
players manoeuvre through the world according to a 
random waypoint model, with a motion time selected 
uniformly at random from seconds, a destination selected 
uniformly at random, and a speed selected uniformly at 
random from (0, 360) pixels per second. The size of the 
game world is scaled according to the number of players. 
The range of dimensions are 640n _ 480n, where n is the 
number of players. All outcomes are based on the 
average of 3 Experiments, with each experiment 
persisting for 60 seconds. The experiments include the 
bent of log n sized LRU cache long pointers. The HDFS 
load balancer and our proposed idea. Our proposal 
clearly concludes the HDFS load balancer. When the 
name node is heavily loaded (i.e., small M’s), our 
proposal remarkably performs better than the 
 
 
 

 
Fig.5 HDFS 

 
HDFS load balancer. For example, if M = 1%, 

the HDFS load balancer takes approximately 60 minutes 
to balance the loads of data nodes. By comparison, our 
proposal takes nearly 20 minutes in the case of M= 1%. 
Specifically, unlike the HDFS load balancer, our 
proposed idea is independent of the load of the name 
node. Especially, approximating the unlimited scenario is 
costly, and the use of blog2 nc virtual peers as proposed 
in introduces a large amount of topology maintenance 
track but does not provide a very close approximation. 
Finally, we notice that while we are illustrating the most 
powerful instantiation of virtual peers, we are correlating 
it to the weakest choice model further improvements are 
available to us just by increasing d to 4. 
 
Conclusions 

A novel load balancing algorithm to deal with 
the load rebalancing problem in large-scale, dynamic, 
active and distributed file systems in clouds has been 
presented in this paper. Our proposal aims to balance the 
loads of nodes and reduce the demanded movement cost 
as much as possible, while taking benefits of physical 
network locality and node heterogeneity. In the absence 
of typical real workloads (i.e., the distributions of file 
chunks in a large-scale storage system) in the public 
domain, we have tested the performance of our proposal 
and compared it against competing algorithms through 
synthesized probabilistic distributions of file chunks. The 
combination workloads stress test the load balancing 
algorithms by creating a few storage nodes that are 
heavily loaded. The computer simulation outcomes are 
encouraging, indicating that our proposed algorithm 
works very well.  
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