
[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

IJESRT

INTERNATIONAL JOURNAL OF ENGINEERING SCIENCES & RESEARCH
TECHNOLOGY

Efficient Load Balancing With Distributed Hash Tables in Cloud
M.Manimegalai*1, Ms. A.Kannammal2

*1PG Scholar, 2Associate professor, Department of Computer Science and Engineering, Jayam College of
Engineering and Technology, Dharmapuri,Tamilnadu, India

manimegalaicse@gmail.com
Abstract

Distributed file systems are key building blocks for cloud computing applications based on the Map Reduce
programming paradigm. In such file systems, nodes all at once serve computing and storage functions; a file is
partitioned into a number of chunks allocated in distinct nodes so that Map Reduce tasks can be performed in
parallel on the nodes. However, in a cloud computing environment, failure is the norm, and nodes may be improved,
replaced, and added in the system. This dependence is clearly incompetent in a large-scale, failure-prone
environment on account of the central load balancer is put under considerable workload that is linearly scaled with
the system size, and may thus become the attainment bottleneck and the single point of failure. Here, a fully
distributed load rebalancing algorithm is presented to cope with the load imbalance problem.

Our algorithm is compared against a centralized approach in a production system and a competing
distributed solution presented in the literature. The simulation outputs indicate that proposal is comparable with the
existing centralized approach and considerably outperforms the prior distributed algorithm in terms of load
imbalance factor, migration cost, and algorithmic overhead.

Keywords: DHT, Centralise System, LoadImBalancing, Distributed System

Introduction
The Distributed file systems an important issue

in DHTs is load-balance the even distribution of items to
nodes in the DHT. All DHTs make a few efforts to load
balance; generally by randomizing the DHT address
associated with each item with a “good enough” hash
function and making each DHT node responsible for a
balanced portion of the DHT address space. Chord is a
prototypical example of these approaches: its “random”
hashing of nodes to a ring means that each node is
responsible for only a small interval of the ring address
space, while the arbitrary mapping of items means that
only a limited number of items land in the (small) ring
interval owned by any node. The cloud computing
updated distributed hash tables do not evenly partition
the address space into which keys get mapped; some
machines get a larger portion of it. Thus, even if keys are
abundant and random, some machines receive more than
their fair share, by almost a factor of n times the average.
To manage with this problem, many DHTs use virtual
nodes each real machine pretends to be several distinct
machines, each participating individually in the DHT
protocol. The machine’s load is thus driven by summing
over several virtual nodes, creating a tight gathering of
load near the average. As an example, the Chord DHTs is
based upon consistent hashing which requires virtual
copies to be operated for every node.

The node will occasionally check its inactive
virtual nodes, and may movement to one of them if the
distribution of load in the system has changed. Since
only one virtual node is alive, the real node need not pay
the original Chord protocol’s multiplicative increase in
space and band width costs. The solutions is therefore
allows nodes to move to arbitrary addresses; with these
freedom shows that load balance an arbitrary distributing
the items, without exhaust much cost in maintaining the
load balance. Here, the scheme works through a kind of
“work stealing” in which under loaded nodes migrate to
portions of the address space occupied by too abundant
items. The protocol is simple and experimental, with all
the complexity in its performance analysis. Here,
primarily interested in studying the load rebalancing
problem in distributed file systems specialized for large-
scale, dynamic and data-intensive clouds. Finally,
permitting nodes to choose arbitrary addresses in our
item balancing protocol makes it easier for malicious
nodes to disrupt the operation of the P2P network. It
would be interesting to identify counter-measures for this
problem.

[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

Related Work
The attempt to load-balance can fail in two

ways. First, the typical “random” partition of the address
space among nodes is not entirely balanced. Some nodes
end up with a larger portion of the addresses and thus
receive a larger portion of the randomly distributed
items. Second, some applications may inhibit the
randomization of data items addresses. For example, to
support range seeking in a database application the items
may need to be placed in a specific order, or at specific
addresses, on the ring. In such cases, find the items
unevenly distributed in address space, means that
balancing the address space among nodes is not adequate
to balance the distribution of items among nodes. Here
the given protocols to solve both of the load balancing
challenges just described.
Performance in a P2P System:

Our online load balancing algorithms are
motivated by a new application domain for range
partitioning peer-to-peer systems.P2P system stores a
relation over a large and dynamic set of nodes, and
support queries over these relations. Many current
systems, known as Distributed Hash Tables (DHTs) use
hash partitioning to ensure storage balance, and support
point queries over the relations. There has been
considerable recent interest in developing P2P systems
that can support efficient ranges of query. For example, a
P2P multi-player game might query for all objects
located in an area in a virtual 2-D space. In a P2P web
cache, a node may request (pre-fetch) all pages with a
specific URL prefix. It is familiar that hash partitioning
is inefficient for answering such ad hoc range of queries,
motivating a search for new networks that allow range
partitioning while still maintaining the storage balance
offered by normal DHTs.

Handling Dynamism in the Network:
 The network is a splits the range of Nh to take
over half the load of Nh, applying the NBRADJUST
operation. Behind this split, there may be
NBRBALANCE violations between two pairs of
neighbours and in responses, ADJUSTLOAD is
executed, first at node Nh and then at node N. It is easy
to show (as in Lemma 3) that the resulting sequence of
NBRADJUST operations repair all NBRBALANCE
violations.

Node Departure:

While in the network, each node governs data
for a particular range. When the node leaves, the data is
stored becomes unavailable to the rest of the peers. P2P
networks resolve this data loss in two ways: (a) Do
nothing and let the “owners” of the data deal with its
availability.

The owners will frequently poll the data to

detect its loss and re-insert the data into the network.
Maintain replicas of each range across various nodes. A
Skip Net DHT organizes peers and data objects
according to their lexicographic addresses in the form of
a variant of a probabilistic skip lists. It supports
logarithmic time range-based lookups and guarantees
path locality. Mercury is more general than Skip Net
because it supports range-based lookups on multiple-
attributes. Our use of random sampling to evaluate query
selectivity constitutes a novel contribution towards
implementing scalable multi-dimensional range queries.
Load balancing is another essential way in which
Mercury from Skip Net. While Skip Net integrates a
constrained load-balancing mechanism, it is only
appropriate when part of a data name is hashed, in which
case the part is unavailable for performing a range query.
This shows that Skip Net supports load-balancing or
range queries not both.

System Model
(a)Data Popularity:
 Unfortunately, in many applications, a
particular range of values may show a much greater
popularity in terms of database insertions or queries than
other ranges. This would cause the node accountable for
the popular range to become overloaded. One obvious
solution is to conclude some way to partitioning the
ranges in proportion to their popularity. As a load pattern
varies, the system should also move nodes around as
needed.

We leverage our approximate histograms to
help implement load-balancing in Mercury. First, each
node can use histograms to decide the average load
existing in the system, and, hence, can resolve if it is
relatively heavily or lightly loaded. Second, the
histograms consist of information, about which parts of
the overlay are lightly loaded.

Fig.1 about which parts of the overlay are lightly loaded

(b)Load Balancing:
 We have shown how to balance the address
space. Some applications, such as those designing to
support range-searching operations, need to designate an
appropriate, non-random mapping of items into the
address space. In this section, we check a dynamic

[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

protocol that aims to balance load for arbitrary item
distributions. To do so, we must forfeit the previous
protocol’s restriction of each node to a small number of
virtual node locations—instead, each node is free to drift
anywhere. Our protocol is randomized, and relies on the
underlying P2P routing framework only insofar as it has
to be able to contact “random” nodes in the system (in
the full paper we show that this can be done even when
the node distribution is skewed by the load balancing
protocol). The protocol is the ensuing, to state the
performance of the protocol, we need the concept of a
half-life [LNBK02], which is the time it takes for half the
nodes or half the items in the system to arrive or depart.

(c)DHT Implementation
 The storage nodes are structured as a network
based on distributed hash tables (DHTs), e.g.,
discovering a file chunk can simply refer to rapid key
lookup in DHTs, given that a unique handle (or
identifier) is assigned to each file chunk. DHTs allow
nodes to self-organize and Repair while constantly
offering lookup functionality in node dynamism,
clarifying the system provision and management. The
chunk servers in our proposal are arranged as a DHT
network. Typical DHTs assurance that if a node leaves,
then its locally hosted chunks are accurately migrated to
its successor; if a node joins, then it allocates the chunks
whose IDs promptly precede the joining node from its
successor to manage. Now we explain the application of
this idea to DHTs. Let h0 be a universally admit hash
function that maps the peers onto the ring.
Correspondingly, let h1; h2; : : :hd be a series of
universally agreed hash functions mapping the items
onto the ring. To embed an item x using d hash
functions, a peer calculates h1(x); h2(x);: : : ; hd(x).
Then, d lookups are executed in parallel to and the peers
p1; p2;;;;; pd responsible for these hash values, according
to the mapping given by h0 values

(d) Chunk creation:
 A file is partitioned into a number of chunks
allocated in distinct nodes so that Map Reduce Tasks can
be performed in parallel over the nodes. The load of a
node is normally proportional to the number of file
chunks the node obtains. Because the files in a cloud can
be promptly created, deleted, and appended, and nodes
can be upgraded, recovered and added in the file system,
the file chunks are not distributed as similarly as possible
among the nodes. Our objective is to assign the chunks
of files as uniformly as possible among the nodes such
that no node manages an excessive number of chunks.

(e)Replica Management:
 In distributed file systems (e.g., Google GFS and
Hadoop HDFS), a constant number of replicas for every
file chunk are maintained in distinct nodes to improve
file availability with respect to node failures and takeoff.
Our current load balancing algorithm does not treat
replicas clearly. It is unlikely that two or more replicas
are placed in an identical node because of the random
nature of our load rebalancing algorithm. More
particularly, each under loaded node samples a number
of nodes, each preferred with a probability of 1/n, to
share their loads (where n is the total number of storage
nodes).

Load Balancing Algorithm
 In our proposed algorithm, each chunk server
node I first estimated whether it is under loaded (light) or
overloaded (heavy) without global awareness. A node is
light if the number of chunks it hosts is smaller than the
threshold. Load statuses of a sample of randomly
preferred nodes. Fig.2 shows that the concept of Load
balancing

Fig.2 Load Balancing

Specifically, each node contacts a number of

randomly selected nodes in the system and builds a
vector denoted by V. A vector abide of entries, and each
entry includes the ID, network address and load status of
a randomly preferred node. Fig. 3 shows the total number
of messages generated by a load rebalancing algorithm,
A large-scale distributed file system is in a

[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

Fig.3 Load Balanced State

Load-balanced state:

 if each chunk server hosts no more than Am
chunks. In our proposed Load-balanced algorithm, each
chunk server node I first estimates whether it is under
loaded (light) or overloaded (heavy) without global
knowledge. Lj A from j to free j’s load. Node j may still
remain as the heaviest node in the system after it has
migrated its load to node i. In this case, the present least-
loaded node, say node i abandon and then rejoins the
system as j’s successor. That is, I become node j+1, and
j’s original successor i thus becomes node j + 2 such a
process repeats iteratively until j is no longer the
heaviest. Then, the same process is performed to release
the extra load on the next heaviest node in the system.
This process repeated until all the heavy nodes in the
system become light nodes.

Others: We will offer a rigorous performance analysis
for the effect of varying nV in Appendix E. Particularly;
we discuss the tradeoff between the value of nV and the
movement cost. A larger nV proposes more overhead for
message transfers, but results in a smaller movement
cost.

Procedure 1 ADJUSTLOAD (Node Ni) fOn Tuple
Insertg
1: Let L(Ni) = x 2 (Tm; Tm+1].
2: Let Nj be the lighter loaded of Ni�1 and Ni+1.
3: if L(Nj) _ Tm�1 then fDo NBRADJUSTg
4: Move tuples from Ni to Nj for equalize load.
5: ADJUSTLOAD(Nj)
6: ADJUSTLOAD(Ni)
7: else
8: Find the least-loaded node Nk.
9: if L(Nk) _ Tm�2 then fDo REORDERg
10: Transfer all data from Nk to N = Nk_1.
11: Transfer data from Ni to Nk, where s.t. L(Ni) =
dx=2e and
 L(Nk) = bx=2c.
12: ADJUSTLOAD (N)
13: fRename nodes appropriately after REORDER.g
14: end if
15: end if

Example1: In the setting above, the maximal load is at
most log log n= log d+O with high probability. Our proof
(not included for reasons of space) uses the layered
induction technique from the seminal work of Because of
the variance in the arc length associated with each peer;
we must modify the proof to take this into account. The
standard layered induction using the fact that if there is k
bins that have load at least k,

Example2: long distance links are constructed using the
harmonic distribution on node-link distance. Value Link
means the overlay when the harmonic distribution on
value distance. Given the capacities of nodes (denoted by
{β1, β2, · · · , βn}), we enhance the basic algorithm in
Section III-B2 as follows: each node i approximates the
ideal number of file chunks that it needs to host in a load
balanced state as follows:
 Ai = γβi,
Notes that the performance of the Value Link overlay is
representative of the performance of a plain DHT under
the absence of hashing and in the presence of load
balancing algorithms which preserve value contiguity.

map(String key, String value):
// key: document name
// value: document contents
for each word w in value:
EmitIntermediate(w, "1");
reduce(String key, Iterator values):

// key: a word
// values: a list of counts
int result = 0;
for each v in values:
result += ParseInt(v);
Emit(AsString(result));

Distributed File System
 We have given several provably efficient load
balancing for distributed file’s protocols for distributed
data storage in P2P systems. Further details and analysis
can be found in a thesis. Our algorithms are simple, and
effortless to implement in. distributed files so clearly
next research step should be a practical evaluation of
these schemes. In addition, several detailed open
problems follow from our work. First, it might be
possible to further enhance the consistent hashing
scheme as discussed at the end of our range search data
structure. Distributed does not conveniently generalize to
more than one order. For example (Fig.4) when storing
the music files, one might want to index them by both
artist and song title, granting lookups according to two
orderings. Since our protocol readjusting the items using
the ordering, performing this for two orderings at the

[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

same time seems difficult. A simple, but insignificant,
solution is to rearrange not the items themselves,
however just store pointers to them on the nodes. This
needs far less storage, and

Fig.4 The average downloading rate and Convergence time

in Network Setting

Makes it possible to maintain two or more
orderings at once. Lastly, permitting nodes to choose
arbitrary addresses in our item balancing protocol for
distributed file’s makes it easier for malicious nodes to
disrupt the operation of the P2P network. It would be
engaging to find counter-measures for this problem.

Performance Evaluation

We run a varying number of players. The
players manoeuvre through the world according to a
random waypoint model, with a motion time selected
uniformly at random from seconds, a destination selected
uniformly at random, and a speed selected uniformly at
random from (0, 360) pixels per second. The size of the
game world is scaled according to the number of players.
The range of dimensions are 640n _ 480n, where n is the
number of players. All outcomes are based on the
average of 3 Experiments, with each experiment
persisting for 60 seconds. The experiments include the
bent of log n sized LRU cache long pointers. The HDFS
load balancer and our proposed idea. Our proposal
clearly concludes the HDFS load balancer. When the
name node is heavily loaded (i.e., small M’s), our
proposal remarkably performs better than the

Fig.5 HDFS

HDFS load balancer. For example, if M = 1%,

the HDFS load balancer takes approximately 60 minutes
to balance the loads of data nodes. By comparison, our
proposal takes nearly 20 minutes in the case of M= 1%.
Specifically, unlike the HDFS load balancer, our
proposed idea is independent of the load of the name
node. Especially, approximating the unlimited scenario is
costly, and the use of blog2 nc virtual peers as proposed
in introduces a large amount of topology maintenance
track but does not provide a very close approximation.
Finally, we notice that while we are illustrating the most
powerful instantiation of virtual peers, we are correlating
it to the weakest choice model further improvements are
available to us just by increasing d to 4.

Conclusions

A novel load balancing algorithm to deal with
the load rebalancing problem in large-scale, dynamic,
active and distributed file systems in clouds has been
presented in this paper. Our proposal aims to balance the
loads of nodes and reduce the demanded movement cost
as much as possible, while taking benefits of physical
network locality and node heterogeneity. In the absence
of typical real workloads (i.e., the distributions of file
chunks in a large-scale storage system) in the public
domain, we have tested the performance of our proposal
and compared it against competing algorithms through
synthesized probabilistic distributions of file chunks. The
combination workloads stress test the load balancing
algorithms by creating a few storage nodes that are
heavily loaded. The computer simulation outcomes are
encouraging, indicating that our proposed algorithm
works very well.

Reference

[1] Stoica, R. Morris, D. Liben-Nowell, D. R.
Karger, M. F. Kaashoek, F. Dabek, and H.
Balakrishnan, “Chord: a Scalable Peer-to-Peer

[Manimegalai, 2(12): December, 2013] ISSN: 2277-9655
 Impact Factor: 1.852

http: // www.ijesrt.com(C)International Journal of Engineering Sciences & Research Technology
[3647-3652]

Lookup Protocol for Internet Applications,”
IEEE/ACM Trans. Netw., vol. 11, no. 1, pp. 17–
21, Feb. 2003.

[2] A. Rowstron and P. Druschel, “Pastry: Scalable,
Distributed Object Location and Routing for
Large-Scale Peer-to-Peer Systems,” LNCS
2218, pp. 161–172, Nov. 2001.

[3] G. DeCandia, D. Hastorun, M. Jampani, G.
Kakulapati, A. Lakshman, A. Pilchin, S.
Sivasubramanian, P. Vosshall, and W. Vogels,
“Dynamo: Amazon’s Highly Available Key-
value Store,” in Proc. 21st ACM Symp.
Operating Systems Principles (SOSP’07), Oct.
2007, pp. 205–220.

[4] A. Rao, K. Lakshminarayanan, S. Surana, R.
Karp, and I. Stoica, “Load Balancing in
Structured P2P Systems,” in Proc. 2nd Int’l
Workshop Peer to- Peer Systems (IPTPS’02),
Feb. 2003, pp. 68–79.

[5] D. Karger and M. Ruhl, “Simple Efficient Load
Balancing Algorithms for Peer-to-Peer
Systems,” in Proc. 16th ACM Symp. Parallel
Algorithms and Architectures (SPAA’04), June
2004, pp. 36–43.

[6] D. DeWitt, R. H. Gerber, G. Graefe, M. L.
Heytens, K. B. Kumar, and M. Muralikrishna.
Gamma -a high performance dataflow database.
In Proc. VLDB, 1986.

[7] D. DeWitt and J. Gray. Parallel database
systems: The future of high performance
database processing. Communications of the
ACM, 36(6), 1992.

[8] H. Feelifl, M. Kitsuregawa, and B. C. Ooi. A
fast convergence technique for online heat-
balancing of btree indexed database over
shared-nothing parallel systems. In Proc.
DEXA, 2000.

[9] P. Ganesan, M. Bawa, and H. Garcia-Molina.
Online balancing of range-partitioned data with
applications to p2p systems. Technical Report
http://dbpubs.stanford.edu/pubs/2004-18,
Stanford U., 2004.

[10] P. Ganesan, B. Yang, and H. Garcia-Molina.
One torus to rule them all: Multi-dimensional
queries in p2p systems. In WebDB, 2004.

[11] S. Ghandeharizadeh and D. J. DeWitt. A
performance analysis of alternative multi-
attribute declustering strategies. In Proc.
SIGMOD, 1992.

[12] N. J. A. Harvey, M. Jones, S. Saroiu, M.
Theimer, and A. Wolman. Skipnet: A scalable
overlay network with practical locality
properties. In Proc. USITS, 2003.

[13] D. R. Karger and M. Ruhl. Simple efficient
load-balancing algorithms for peer-to-peer
systems. In Proc. IPTPS, 2004.

